

Reduced Surface Emissions through Airport Surface Movement Optimization

Prof. Hamsa Balakrishnan

Prof. R. John Hansman

Aeronautics & Astronautics and Engineering Systems

MIT

Motivation

- Opportunities to improve the environmental and economic performance and efficiency of airports and airlines
- Increased Congressional/public pressure to improve environmental performance
- In 2006, aircraft in the U.S. spent over 20 million minutes taxiing in to their gates, and over 49 million minutes taxiing out for departure
- Taxiing aircraft burn fuel, and contribute to surface emissions of CO₂, hydrocarbons, NO_x, SO_x and particulate matter
- Taxi times are typically much larger than the unimpeded taxi times

Objectives

•	Reduction of surface emissions through improved surface movement
	optimization

•	Investigate promising near-term opportunities for surface optimization
	☐ Limiting build up of queues on the airport surface
	☐ Gate-hold strategies
	☐ Taxi route planning

- Assess challenges to implementation, and develop strategies to overcome them
 - ☐ Gate usage
 - ☐ ATC procedures
- Ensure equitable treatment of airlines

What is the "right" number of aircraft on the surface?

 There is a critical number of aircraft on the surface in order to achieve efficient surface operations

Gates

Surface congestion increases taxi times

 Taxi times are closely correlated with the number of aircraft on the airport surface

Queuing network model of surface operations

Operational challenges: First-Come-First-Served departure queues

- Pushback order can make a significant difference to the departure time
- Suppose the red aircraft pushes back just before the blue aircraft
- Final departure sequence is:

Operational challenges: Gate usage

 Gate assignments affect ability to delay pushback

Gate leases may make gate-swaps infeasible

Terminal E

Aer Lingus, Air France, Alitalia, American (Int'I), British Airways, Finnair, flyGlobespan, Iberia, Icelandair, JetBlue Airways (Int'I), KLM, Lufthansa, Northwest, SATA,

US Airways Shuttle

Swiss, Virgin Atlantic Airways TERMINAL SATELLITE **Empty** TERMINAL gate QuickTime™ and a TIEF (Uncompressed) decompressor are needed to see this picture. **Terminal C Arrival** that is AirTran Airways TERMINAL Cape Air assigned to Terminal A Continental this gate Delta JetBlue Airways Delta Connection/ Midwest **Terminal B** Comair United Air Canada Delta Shuttle **United Express** Alaska Airlines America West **Departure** that is currently American/American Eagle occupying this gate **Spirit Airlines** US Air/US Air Express/

Airports for a pilot study

We would like to engage with airports for a pilot study

For example, the ten major airports with the largest taxi times?

Approach

- Identification of inefficiencies/opportunities for improvement in current surface operations
 would really welcome and appreciate your ideas and input!
- Analysis of different surface movement optimization strategies, and their potential benefits
- 3. Identification of potential barriers to the adoption of promising surface movement optimization strategies
- 4. Development of a plan for the field trials of promising concepts
- 5. Determination of factors influencing candidate airports for field trials
- 6. Description of an initial plan for a pilot airport study on reducing emissions through improved surface traffic management

Summary

•	Optimized surface movement planning is a promising approach to decreasing surface emissions
	 □ Early studies seem to suggest that controlling pushback ("gate-holding strategies") can help reduce taxi times □ Other approaches?
	☐ Plan to introduce environmental factors into objective function
•	Implementation barriers need to be identified and addressed
	 □ Gate usage and ownership □ Infrastructure issues: taxiway layout, availability of tugs □ Interactions between surface and airspace operations □ Airline concerns
•	Factors influencing candidate airports for field tests
	 □ Taxi times □ Gate ownership/lease procedures □ Ramp control by airlines □ Stakeholder interest □ Non-attainment areas
	☐ Availability of surface surveillance